Protein Expression

Recombinant production of proteins is one of the most powerful techniques used in the Life Sciences. The ability to produce and purify an abundance of a desired recombinant protein can permit a wide range of possibilities including its use in industrial processes, or its use to diagnose or treat disease.

At first glance, recombinant protein expression may appear simple. Essentially, DNA encoding a target protein is cloned downstream of a promoter in an expression vector. This vector is then introduced into a host cell, and the cell’s protein synthesis machinery produces the desired protein. In practice, however, protein expression can be very challenging because so many factors may influence the process. For example, each protein folds in its own unique manner, a process that may be influenced by the choice of expression host. Similarly, some proteins require post-translational modifications or proper insertion into a biological membrane. Finally, some proteins may have an activity that is detrimental to the host. Thus, no single solution exists for successful production of all recombinant proteins. Instead, it is beneficial to have access to a wide range of expression tools, and a willingness to explore multiple approaches to better one’s chances for success. Protein Expression at NEB.


Choose Type:

Protein Expression includes these areas of focus:
Cell-Free Protein Expression
NEBExpress® Cell-free E. coli Protein Synthesis System
Protein Expression in Yeast
Expression of Difficult Proteins
Disulfide-bonded Protein Expression
Membrane Protein Expression
Toxic Protein Expression
Target Protein Insolubility
Protein Expression in E. Coli
T7 Expression
Non-T7 Expression
FAQs for Protein Expression
Protocols for Protein Expression
Application Notes for Protein Expression
    Publications related to Protein Expression
  1. Sakhtah, H., Behler, J., Ali-Reynolds, A., Causey, T.B., Vainauskas, S., Taron, C.H. 2019. A novel regulated hybrid promoter that permits autoinduction of heterologous protein expression in Kluyveromyces lactos Appl. Environ. Microbiol.. , PubMedID: 31053583, DOI:
  2. Reuter, W.H., Masuch, T., Ke, N., Lenon, M., Radzinski, M., Van Loi, V., Ren, G., Riggs, P., Antelmann, H., Reichmann, D., Leichert, L.I., Berkmen, M 2019. Utilizing redox-sensitive GFP fusions to detect in vivo redox changes in a genetically engineered prokaryote Redox Biol. 26, PubMedID: 31450103, DOI: 10.1016/j.redox.2019.101280
  3. Chuzel, L., Ganatra, M.B., Schermerhorn, K.M., Gardner, A.F., Anton, B.P., Taron, C.H. 2017. Complete genome sequence of Kluyveromyces lactis strain GG799, a common yeast host for heterologous protein expression Genome Announcements. 5(30), PubMedID: 28751387, DOI:
  4. Mauris, J.and Evans, T.C., Jr. 2010. A human PMS2 homologue from Aquifex aeolicus stimulates an ATP-dependent DNA helicase. J Biol.Chem. 285(15), PubMedID: 20129926, DOI:
Legal Information

This product is covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB).

While NEB develops and validates its products for various applications, the use of this product may require the buyer to obtain additional third party intellectual property rights for certain applications.

For more information about commercial rights, please contact NEB's Global Business Development team at

This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.